CRACKING RESISTANCE: Issues, Testing, Evaluation & Future

Matthew Corrigan, P.E.

U.S. DOT | Federal Highway Administration Asset Management, Pavement, and Construction May 10-11, 2016

Re-emphasized due to recycling & additives

Outline

- Cracking Types
- Laboratory Test Loading Types
- Overview of 10 Tests (NCHRP 9-57)
- Recycled Materials
- Focus on AMPT Cyclic Fatigue
 - Rehabilitation Scenario
 - Performance Based Mix Design

Cracking Types (Modes)

Four (4) basic cracking modes

Low Temperature Climate Associated

Reflection / Reflective
 Climate & Load Associated

Bottom-Up
 Load Associated

Top-Down
 Load Associated

Does mode matter? Are cracks simply cracks from an evaluation and prevention point of view?

Loading Types (Modes)

- Two (2) basic materials test loading modes
 - Monotonic load gradually applying a load until reaching the test load magnitude (one cycle)
 - Tension
 - Compression
 - Cyclic load multiple cycles of incremental loading and unloading
 - Oscillating
 - Tension
 - Compression
 - Combination of compression and tension

Cracking Modes versus Tests

Cracking Laboratory Tests

Ten (10) protocols - highlighted as part of NCHRP Project 09-57

- Indirect Tensile (IDT)
 - for low temperature cracking
- Indirect Tensile (IDT)
 - for top-down cracking
- Semicircular Bend (SCB)
 - at low temperature
- Semicircular Bend (SCB)
 - at intermediate temp.
- Disk Shaped Compact Tension (DCT)

- Thermal Stress Restrained Specimen Test / Uniaxial Thermal Stress and Strain Test (TSRST/UTSST)
- Texas Overlay Test (TxOT or OT)
- Repeated Direct Tension (RDT)
- Bending Beam Fatigue
- AMPT Cyclic Fatigue (S-VECD)

Cracking Laboratory Tests

Ten (10) protocols - cracking mode(s)

Low Temperature	Reflection	Bottom-Up	Top-Down		
DCT (ASTM D7313-13)	Texas OT (TxDOT-Tex 248-F)	Beam fatigue (AASHTO T321)	IDT (Univ. of Florida)		
SCB (AASHTO TP105)	DCT (ASTM D7313-13)	AMPT Cyclic Fatigue (AASHTO TP107)	AMPT Cyclic Fatigue (AASHTO TP107)		
IDT (AASHTO T322)	SCB (Louisiana State Univ LTRC)	RDT (Texas A&M Univ.)	RDT (Texas A&M Univ.)		
TSRST/UTSST (Univ. of Nevada, Reno)		SCB (LTRC and Univ. of Illinois)	SCB (LTRC and Univ. of Illinois)		
		Texas OT (TxDOT-Tex 248-F)			

Indirect Tensile (IDT)

- Low Temperature AASHTO T 322-07 (2011)
 Determining the <u>Creep Compliance and Strength</u> of Hot Mix Asphalt (HMA) Using the Indirect <u>Tensile</u>
 Test Device
- Top-down University of Florida

M_r test (optional), D_t test, and tensile strength test (cyclic

and monotonic tests)

Energy Ratio

Semicircular Bend (SCB)

- Low Temperature AASHTO TP 105-13(2015)
 Determining the <u>Fracture Energy</u> of Asphalt Mixtures
 Using the Semicircular Bend Geometry (SCB)
- Intermediate Temperature LTRC and University of Illinois Testing Protocols, <u>critical energy release rate</u>

Disk Shaped Compact Tension

 ASTM D7313-13 Determining <u>Fracture Energy</u> of Asphalt-Aggregate Mixture Using the Disk-Shaped Compact Tension Geometry

TSRST / UTSST

- Low Temperature <u>Fracture temperature</u> (coefficient of thermal contraction from UTSST)
- AASHTO TP10-93
 Thermal Stress
 Restrained
 Specimen Tensile
 Strength (withdrawn)
- UTSST is also known as the Modified TSRST
 - University of Nevada, Reno

Texas Overlay Test (TxOT)

 Reflection cracking & bottom-up fatigue cracking – TxDOT Test Standard Tex-248-F (cyclic test)

Repeated Direct Tension (RDT)

- Bottom-up and top-down Texas A&M University
- Paris' law parameters, endurance limit, healing properties, and average crack size

Bending Beam Fatigue

Bottom-up cracking - AASHTO T 321-14
 Determining the Fatigue Life of Compacted Asphalt
 Mixtures Subjected to Repeated Flexural Bending

AMPT Cyclic Fatigue

- Bottom-up and top-down cracking
- AASHTO TP 107-14 Determining the Damage Characteristic Curve of Asphalt Mixtures from Direct Tension Cyclic Fatigue Tests
- S-VECD used with more advanced models to simulate pavement performance and predict distresses
- validated with FHWA's ALF test lanes
- used in FHWA's Mobile
 Asphalt Testing Trailer

- Empirical vs. Mechanistic
 - simplified monotonic load single temperature
 - more robust regime of traffic loading and climate conditions

Actual pavement damage typically accumulates over multiple events

- NOT a single event
- Pavement remains intact while it looses a lot of modulus and then a crack occurs

- Mixture ageing (conditioning)
 - short term vs. long term oven conditioning
 - a need for longer oven conditioning to simulate actual field conditions!

field cracking behavior worsens with time due to field ageing, therefore ... laboratory oven conditioning (ageing) must be considered

- Ruggedness?
- Precision and Bias?
 - requires ruggedness evaluation first!
 - otherwise not valid
 - Repeatability/Reproducibility
 - use of test for acceptance/payment

- Sensitivity Analysis?
 - various materials and combinations
- Acceptance Criteria?
- Correlation from lab to actual field pavement performance?
- Integration with Structural Design?
 - Climate
 - Pavement Structure
 - Traffic

FHWA Emphasis on AMPT Cyclic Fatigue

- Wanted a performance test that could be <u>defensible</u>, not empirical correlations
 - Circa 1999 vetting and peer review; "winning" candidate in NCHRP 9-19 Tasks F&G
 - Heritage and "pedigree" of the theory based in aerospace industry application for solid rocket propellant
 - <u>Performance Prediction</u> not single value index
 - AASHTO 1993 Layer Coefficient
 - Marshal Stability and Flow
- Extended Time-Temp Superposition = <u>Less Testing</u>
- FHWA promoting the <u>investment in AMPTs</u> for the PavementME design (formerly MEPDG) & the AMPT can do much more than just dynamic modulus |E*| testing
 - Unified/common AMPT equipment specification criteria
 - Unified/common compaction control with SGC

TP 107 & LVECD Handles Structure

Rehab "What-if?" Scenarios George Washington Memorial Parkway 77,000 AADT

- Control
 - PG70-22
 - PG64-22
- A.R. chip seal SAMI
- SBS PG76-22
- Ultrathin Bonded Wearing Course
- Gap-Graded Wet Process Crumb Rubber
- Kraton HiMA®
 - PG76-28 E
- Fiber reinforced

Calibrated, Predicted Cracking

Field Sites Include:

NCAT, ALF₂₀₀₂, Manitoba WMA, Manitoba RAP, Brazil, Korea, China, New York, Louisiana, & counting...

U.S. Department of Transportation
Federal Highway Administration

AMPT Cyclic Fatigue Test (AASHTO TP-107) Instructional Videos

Contact Nelson Gibson or Matthew Corrigan if you would like to know more ...

https://www.youtube.com/playlist?list=PLyLypK-v8li-KjQq-Z6lmad4v2o_LcR3b

Provides guidance for increased lab efficiency, reduced testing/replicates, and consistent test data

AMPT Cyclic Fatigue Test (AASHTO TP-107) Instructional Videos

- Part 1.Reheating and Compacting
- Part 2.Coring and Cutting
- Part 3.Cleaning and Gluing LVDT Tabs
- Part 4.Platen Cleaning and Gluing
- Part 5. Running |E*| See also NHI Training Course
- Part 6.Choosing the Strain Level
- Part 7.Attaching Specimen and Running Test
- Part 8.Post Processing (alpha-Fatigue)
- Part 9.Post Processing LVECD Structural Analysis

Specimen Prep – Compaction Height

- Best Results for middle failure, experience-based
- Both E* and Cyclic Fatigue minimum 180mm SGC
- Cut more material away for Cyclic Fatigue
- Do not make a shorter SGC for Cyclic Fatigue

AMPT Cyclic Fatigue Test (AASHTO TP-107)

AMPT Cyclic Fatigue Test (AASHTO TP-107)

Guidance on Choosing Test Strain Levels*

- we went through the trial and error so you don't need to (do as much)
- based on testing of 64 different mixes
 - additional mixes and materials being added
- identified a failure pattern
- *courtesy of Dr. Nelson Gibson, FHWA

		* is greate 300 micro specime			If 11,000 > E* > 5,500 Mpa, select 500 microstrain as the first specimen's strain				If the E* is less than 5,500 Mpa, select 800 microstrain as the first specimen's strain				
200	62,514	129,033	258,702	503,812	-	-	-	-	-	-	-	-	-
250	4,220	10,969	27,219	64,485	145,856	314,972	-	-	-	-	-	-	-
300	467	1,464	4,324	12,022	31,468	77,539	179,856	-	-	-	-	-	-
350	72	267	913	2,905	8,605	23,704	60,744	144,799	-	-	-	-	-
400	-	-	237	849	2,798	8,491	23,721	61,010	144,466	-	-	-	-
450	-	-	-	287	1,039	3,433	10,350	28,465	71,421	163,488	-	-	-
500	-	-	-	-	428	1,527	4,929	14,392	38,032	90,944	-	-	-
550	-	-	-	-	-	734	2,519	7,766	21,507	53,501	119,549	-	-
600	-	-	-	-	-	-	1,365	4,422	12,781	32,962	75,847	155,720	-
650	-	-	-	-	-	-	777	2,634	7,919	21,111	49,906	104,615	-
700	-	-	-	-	-	-	-	1,630	5,084	13,975	33,872	72,385	136,383
750	-	-	-	-	-	-	-	1,043	3,365	9,518	23,613	51,374	98,022
800	-	-	-	-	-	-	-	687	2,287	6,646	16,849	37,278	71,969
850	-	-	-	-	-	-	-	-	1,592	4,742	12,271	27,581	53,840
900	-	-	-	-	-	-	-	-	1,131	3,450	9,101	20,761	40,952
950	-	-	-	-	-	-	-	-	818	2,553	6,859	15,869	31,613
1,000	-	-	-	-	-	-	-	-	-	1,919	5,246	12,298	24,730
1,050	-	-	-	-	-	-	-	-	-	1,463	4,064	9,650	19,579
1,100	-	-	-	-	-	-	-	-	-	1,129	3,187	7,658	15,670
1,150	-	-	-	-	-	-	-	-	-	881	2,526	6,140	12,667
1,200	-	-	-	-	-	-	-	-	-	-	2,022	4,970	10,332
1,250	-	-	-	-	-	-	-	-	-	-	1,633	4,057	8,498
1,300	-	-	-	-	-	-	-	-	-	-	1,330	3,339	7,043
1,350	-	-	-	-	-	-	-	-	-	-	1,092	2,768	5,879
1,400	-	-	-	-	-	-	-	-	-	-	903	2,310	4,940
1,450	-	-	-	-	-	-	-	-	-	-	752	1,940	4,176
1,500	-	-	-	-	-	-	-	-	-	-	-	1,640	3,550
1,550	-	-	-	-	-	-	-	-	-	-	-	1,393	3,035
1,600	-	-	-	-	-	-	-	-	-	-	-	1,190	2,607
1,650	-	-	-	-	-	-	-	-	-	-	-	1,021	2,250
1,700	-	-	-	-	-	-	-	-	-	-	-	880	1,950
1,750	-	-	-	-	-	-	-	-	-	-	-	762	1,697
1,800	-	-	-	-	-	-	-	-	-	-	-	-	1,483
1,850	-	-	-	-	-	-	-	-	-	-	-	-	1,301
1,900	-	-	-	-	-	-	-	-	-	-	-	-	1,145
1,950	-	-	-	-	-	-	-	-	-	-	-	-	1,011
2,000	-	-	-	-	-	-	-	-	-	-	-	-	896

TP107-14 Section 11.2 requires three tests need to be completed at three strain levels.

Ideally failure cycles should be different by orders of magnitude between 1,000 - 64,000 *ETG 2012 Meeting Minutes

Fatigue Test Parameters

	If the E* is greater than 11,000 MPa, select 300 microstrain as the first specimen's strain				If 11,000 > E* > 5,500 Mpa, select 500 microstrain as the first specimen's strain				If the E* is less than 5,500 Mpa, select 800 microstrain as the first specimen's strain				
200	62,514	129,033	258,702	503,812	-	-	-	-	-	-	-	-	-
250	4,220	10,969	27,219	64,485	145,856	314,972	-	-	-	-	-	-	-
300	467	1,464	4,324	12,022	31,468	77,539	179,856	-	-	-	-	-	-
350	72	267	913	2,905	8,605	23,704	60,744	144,799	-	-	-	-	-
400	-	-	237	849	2,798	8,491	23,721	61,010	144,466	-	-	-	-
450	-	-	-	287	1,039	3,433	10,350	28,465	71,421	163,488	-	-	-
500	-	-	-	-	428	1,527	4,929	14,392	38,032	90,944	-	-	-
550	-	-	-	-	-	734	2,519	7,766	21,507	53,501	119,549	-	-
600	-	-	-	-	-	-	1,365	4,422	12,781	32,962	75,847	155,720	-
650	-	-	-	-	-	-	777	2,634	7,919	21,111	49,906	104,615	-
700	-	-	-	-	-	-	-	1,630	5,084	13,975	33,872	72,385	136,383
750	-	-	-	-	-	-	-	1,043	3,365	9,518	23,613	51,374	98,022
800	-	-	-	-	-	-	-	687	2,287	6,646	16,849	37,278	71,969
850	-	-	-	-	-	-	-	-	1,592	4,742	12,271	27,581	53,840
900	-	-	-	-	-	-	-	-	1,131	3,450	9,101	20,761	40,952
950	-	-	-	-	-	-	-	-	818	2,553	6,859	15,869	31,613
1,000	-	-	-	-	-	-	-	-	-	1,919	5,246	12,298	24,730
1,050	-	-	-	-	-	-	-	-	-	1,463	4,064	9,650	19,579
1,100	-	-	-	-	-	-	-	-	-	1,129	3,187	7,658	15,670
1,150	-	-	-	-	-	-	-	-	-	881	2,526	6,140	12,667
1,200	-	-	-	-	-	-	-	-	-	-	2,022	4,970	10,332
1,250	-	-	-	-	-	-	-	-	-	-	1,633	4,057	8,498
1,300	-	-	-	-	-	-	-	-	-	-	1,330	3,339	7,043
1,350	-	-	-	-	-	-	-	-	-	-	1,092	2,768	5,879
1,400	-	-	-	-	-	-	-	-	-	-	903	2,310	4,940
1,450	-	-	-	-	-	-	-	-	-	-	752	1,940	4,176
1,500	-	-	-	-	-	-	-	-	-	-	-	1,640	3,550
1,550	-	-	-	-	-	-	-	-	-	-	-	1,393	3,035
1,600	-	-	-	-	-	-	-	-	-	-	-	1,190	2,607
1,650	-	-	-	-	-	-	-	-	-	-	-	1,021	2,250
1,700	-	-	-	-	-	-	-	-	-	-	-	880	1,950
1,750	-	-	-	-	-	-	-	-	-	-	-	762	1,697
1,800	-	-	-	-	-	-	-	-	-	-	-	-	1,483
1,850	-	-	-	-	-	-	-	-	-	-	-	-	1,301
1,900	-	-	-	-	-	-	-	-	-	-	-	-	1,145
1,950	-	-	-	-	-	-	-	-	-	-	-	-	1,011
2,000	-	-	-	-	-	-	-	-	-	-	-	-	896

https://en.wikipedia.org/wiki/Disability-adjusted_life_year

Performance Prediction

(traffic - structure - climate)

Already has capability

Involved or Perceived as Complicated.

Make it simpler

Performance Prediction

(traffic - structure - climate)

Already has capability

Involved or Perceived as Complicated.

Make it simpler

Functionality has to be added

Recycled Materials

- reclaimed asphalt pavement (RAP)
- reclaimed asphalt shingles (RAS)
 - manufactured scrap
 - roofing tear-offs
- re-refined engine oil bottoms (REOB)
- ground tire rubber (GTR)
- other materials in a pre-aged condition and/or which provide accelerated ageing characteristics and behavior

FHWA Recycled Materials Policy

FHWA longstanding position that <u>any</u> materials used <u>shall not adversely affect</u> performance, safety or the environment of the highway system

- February 7, 2002 FHWA Policy Memorandum
 - "...the policy acknowledges that recycling will not be appropriate in all cases and provides guidance for making that determination."
 - e.g. recycled/reclaimed/re-used/re-refined ...

FHWA Recycled Materials Policy

- Engineering suitability
- 2. Environmental suitability
- 3. Economic assessment

Memorandums to FHWA Division Offices

20 October 2014

- Walter C. Waidelich,
 Associate Administrator for Infrastructure
- Increasing number of state highway agencies reporting <u>pre-mature cracking</u> in relatively new asphalt pavements with <u>high content</u> of <u>recycled asphalt</u> binder
- Increased concerns with high levels of RAS use especially when RAP is already used
 - Potential increased cracking due to low temperatures, thin pavement sections, and increased asphalt ageing
- Reminder to follow sound engineering design and construction practices

US Department of Transportation Federal Highway Administration

Memorandum

Memorandum to

FHWA Division & FLHD

avements d = 0.00

11 December 2014

- FHWA longstanding position that <u>any</u> materials used <u>shall not</u> adversely affect performance, safety or the environment of the highway system
- Nov 2014 AASHTO SOM survey shows RAS limitations in place/needed
- Need to establish appropriate level of use
- Directs the review of RAS use criteria with State
 - specification changes to mitigate risk of failures
 - ensure AASHTO standard PP 78 use for future
 Federal-aid projects if performance issues are identified

Recycled Binders - RAS & RAP

RAP/RAS Task Force within ETG

- Current main issue to be addressed:
 - How much of the RAS binder becomes effective asphalt binder? "Quantity"
 - How to address the stiffness/brittleness of the RAS binder? "Quality"
 - Binder grade adjustment guidelines

... more on this later!

FHWA collaboration with ALF

Production HMA WMA WMA Technology Recycle		. // /		AAAAM
WMA Technology Recycle Content	300°F	- 320°F	240°F	- 270°F
Content			Foam	Chem.
0%	PG64	1-22	2	729
20% ABR RAI ≈ 23% by weight	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PG64-22		PG64-22
20% ABR RAS ≈ 6% Shingle by wei		PG58-28		4
40% ABR RAI ≈ 44% by weight		PG58-28	PG58-28	PG58-28

A1 5 1 ama #	% <i>A</i>	\BR	Virgin PG	Drum	WMA Droops	Cycles to First	
ALF Lane #	RAP	RAS	Grade	Discharge Temperature	WMA Process	ALF Crack	
1	0		64-22	300-320		368,254	
2	40		58-28	240-285	Water Foaming	tbd	
3		20	64-22	300-320		42,399	
4	20		64-22	240-270	Evotherm	88,740	
5	40		64-22	300-320		36,946	
6	20		64-22	300-320		122,363	
7		20	58-28	300-320		23,005	
8	40		58-28	300-320		tbd	
9	20		64-22	240-285	Water Foaming	270,058	
11	40		58-28	240-270	Evotherm	81,044	

FHWA collaboration with ALF

U.S. Department of Transportation
Federal Highway Administration

FHWA collaboration with ALF

ALF Validation Results (to date)

LVECD Structural Prediction % Nodes Below Critical Damage											
		Measured ALF									
Unaged Aged									Performance		
Ac	Duilt	Perfect		As Built		Perfect		Terrormance			
As	As Built		Construction		As Duilt		Construction				
L2	9%	L2	11%	L1	12%	L4	12%	L1	368,254		
L1	10%	L4	12%	L4	14%	L1	14%	L9	270,058		
L4	13%	L6	13%	L9	16%	L9	17%	L4	88,740		
L6	13%	L1	14%	L2	18%	L2	19%	Lanes 2, 6, and 8 remain to be tested			
L9	15%	L9	16%	L6	19%	L6	19%				
L8	18%	L8	17%	L8	22%	L8	21%				
L11	19%	L11	18%	L11	29%	L11	28%	L11	81,044		
L3	31%	L3	31%	L5	42%	L5	47%	L3	42,399		
L7	-	L5	35%	L7	66%	L7	62%	L5	36,946		
L5	-	L7	46%	L3	-	L3	-	L7	23,005		

Re-Refined Engine Oil Bottoms

National dialogue on understanding product, use, and limitations:

- non-bituminous additive or modifier?
- UTI improvement or dilutant?
- use in the U.S. market?
- product properties?
- final asphalt binder and mixture properties?

Why REOB?

- Used to soften base binder PG grade
- Increased use of RAP/RAS has led to a need for softer grades, which has led to increased demand for REOB or other "soft" fluxes
- Limited crude sources and refineries to produce "softer" grades w/o back blending
- Economic and market share pressures
- Recycling, sustainability, and "Green" initiatives

"Used since mid 1980's"... as reported by REOB re-refiners/suppliers

(re-refined) REOB...also know as:

- re-refined vacuum tower bottoms (VTB) (RVTB)
- asphalt flux, asphalt cutter
- re-refined asphalt cement
- asphalt flux, asphalt extender
- waste engine oil residue (WEO),
 WEO residue (WEOR), engine oil residue (EOR)
- re-refined asphalt cutter (RRAC)
- vacuum tower asphalt extender (VTAE),
- engine oil bottoms (EOB), recycled EOB (R-EOB)
- re-refined heavy vacuum distillation oil (RHVDB)

etc. etc. ...

What is REOB?

 The <u>re-refined</u> residual distillation product from a <u>vacuum tower</u> in a re-refinery dedicated to processing recovered waste drain lubricating oil

Both "re-refined" and "vacuum tower" are important features for this product

Three National REOB Task Force Groups

- FHWA Binder Expert Task Group (ETG)
- Asphalt Institute
 - under direction of their Technical Advisory Committee (TAC)
 - State of the Knowledge Document
- AASHTO Subcommittee on Materials
 - respond to Standing Committee on Highways (SCOH) resolution

Re-refined Engine Oil Bottoms

REOB Task Force within Binder ETG Discussions:

- Which rheological parameter
 - critical temperature change (ΔT_c)
 - Glover-Rowe (GR)
 - rheological index (R value)
 - cross over frequency (ω_c)

All of these parameters can be interrelated from understanding the relationship between loading time (or frequency) and temperature.

Re-refined Engine Oil Bottoms

Field Studies - with distress data

- FHWA-Asphalt Research Consortium-WRI Validation Sites
 - Rochester, MN Olmsted County 112
- MnROAD Test Track Low Volume Road Test Section Sites

Exhibited increased cracking distress

Recycled Binders - RAS & RAP Re-refined Engine Oil Bottoms

- ETG Task Force efforts and consensus
- Recommendations from ETG to AASHTO Subcommittee on Materials ...

... more on this later in the schedule during the AASHTO and ETG presentations.

Thank You!!

FHWA's Mobile Asphalt Testing Trailer
Office of Asset Management, Pavement, and Construction

