Performance-Related Specifications: Integration of the Asphalt Mixture Performance Tester (AMPT)

Acknowledgements

- Headquarters Office of Asset Management, Pavement, and Construction
- Turner-Fairbank Highway Research Center - Office of Infrastructure Research and Development
- Resource Center Office of Technical Services

Background

- Owner agencies short on funding
 - Need more pavement life
 - Less rehab
 - More "bang for buck"
- MAP-21 introduced performance-based administering of federal funds
 - FHWA established measures for States to set own targets

Two Questions

- How can I extend pavement life?
 - Specification development/targets
 - Exceeding performance thresholds
 - Optimizing asset management plan
- How can I measure performance upfront?
 - Effect of RAP, WMA, etc., and pavement structure
 - Laboratory testing and conditioning
 - Fundamental
 - Index-based

AMPT – Addressing a Need

- Late 1980s-Early 1990s: Strategic Highway Research Program
 - Superpave mixture design approach
 - Performance grade binders
 - But no viable performance tests for mixture
- National Cooperative Highway Research Program
 - 9-19: Identify simple performance tests for Superpave (rutting, fatigue)
 - Dynamic modulus, flow number, flow time
 - 9-29: Produce test methods and prototype, conduct ruggedness and interlaboratory studies
 - Simple Performance Tester (now known as AMPT) was born!

Continuum of Specifications

Performance-Related Specifications (PRS)

"QA specifications that describe the desired levels of <u>key materials and</u> <u>construction quality characteristics</u> that have been found to <u>correlate with</u> <u>fundamental engineering properties that</u> <u>predict performance</u>"

> Transportation Research Circular Number E-C137 Glossary of Highway Quality Assurance Terms

Benefits of PRS

- Long term pavement performance predicted from <u>fundamental</u> <u>engineering properties</u>
- Incentives and disincentives justified through reduction or increase in pavement life
- Allow contractors to be more <u>innovative</u> and more competitive

Challenges with PRS

- Testing efficiency and simplicity

 Completed/Continuous
- Standardization of test methods
 - Ongoing
- Reliability of performance prediction models
 - Complete
- Performance volumetric relationships
 - Ongoing
- Same principles and methods between mix design and PRS
 - Ongoing

Standardization of Test Methods

Testing Efficiency and Simplicity

Federal Highway Administration

Testing Efficiency and Simplicity (2)

	Large Specimen	Small Specimen
Steel Putty	Devcon 10110	Devcon 10240
Working Time	10 – 20 min.	5 min.
Functional Cure	16 hours	1 hour
Amount of Putty (per specimen)	100 g	6 g

Testing Specimen from Field Cores

- Asphalt concrete layers are generally thinner than 100 mm
- Allow for performance testing individual layers of as-built pavement

FHWA PRS Initiative

- Use of fundamental tests to capture variance between as-designed and as-built AQCs
- Asphalt Mixture Performance Tester (AMPT) used in performance balanced mixture design (PBMD → PEMD)
- Structural response model (stresses and strains)
- Performance volumetric relationships used in construction

FHWA PRS Initiative

PERFORI fundamental tests to capture ween as-designed and as-built

- ANCE TESTING ONLY SIGN PH/ mixture desig
- Structural response strains)
- Performance volumetric relation in construction

<u>Performance-engineered mixture design</u> (balanced mixture design)

- Fundamental
 - How much distress? How much life?
 - Stresses and strains
 - Material properties (i.e., modulus)
 - Use with structural response model (FlexPAVE[™])
 - Many temperature/loading conditions represented
- Index-Based
 - Go/no-go: correlation-based
 - Some engineering properties, some empirical
 - More tied to a material database
 - Not used with structural response model
 - Only a few temperature/loading conditions represented

AMPT

- Temperature range from about 4° to 70°C
- Computer-controlled device
 - Software built-in for various test procedures
- Fundamental tests
 - Stress and strain modeling
 - "Bulk testing"
 - Pavement ME or $FlexPAVE^{TM}$
- Kits available for other tests

AMPT Overview

AMPT + Performance Prediction

AMPT Cyclic Fatigue

- Fundamental, repeated loading test
- Direct tension (pull-pull)
- Small-specimen testing available (AASHTO TP xxx)
- AASHTO TP 107 revisions out for ballot!

AMPT Cyclic Fatigue Process

Preparation

- Cylindrical specimen
- 100 mm x 130 mm
- Small-specimen: 38 mm x 110 mm
- End plate gluing, clamp system being explored
 - 2-3 days for mix

Testing

- Dynamic modulus fingerprint for specimen variability
 - Pull-pull fatigue test
- Strain level based on TFHRC database
- Test temperature based on location of interest
- Load until crack forms
 - 1-2 days for mix

Analysis

- AMPT automatically captures data for analysis

- Calculate damage via FlexMAT[™] or FlexPAVE[™]

- Assign mixture rankings or use FlexPAVE[™]
 - 1-2 hours for mix

About one week per mixture...worth it when considering the cost of premature failure?

Field Validation of AMPT Cyclic Fatigue

- Pavement prediction software built from models
- Field validation
 - 59 mixtures
 - 55 different pavement structures
- Develop laboratory-to-field transfer functions
- Volumetrics have a seat at the table!

Advantages of AMPT Cyclic Fatigue

- Standard sample preparation
- AASHTOWare Pavement ME compatible
- Ruggedness, precision and bias underway
- FlexMATTM & FlexPAVETM available
- Predicts performance!
- Material behavior across wide range of loading/temperature conditions!

AMPT Implementation

- Transportation Pooled Fund Study (TPF(5)-178)
 - Purchase, installation of 29 AMPTs
 - NHI Course (over 80 trainees)
 - Interlaboratory study on effect of air voids
 - National workshop
 - Equipment specification, and others!
- Test standard development, improvement, and revision
- Instructional videos, TechBriefs
- PRS shadow implementation (TFHRC-led)
- MATT projects/training
- User Groups at TRB and regional meetings

AMPT Users Group

- National/International
 - -TRB Annual Meeting
 - Discussion of issues, best practices, future efforts
 - -70 attendees, 10 DOTs present
- Regional
 - User-Producer Groups
 - State Asphalt Paving Assoc. meetings

AMPT Users Group

- National/International
 - TRB Annual Meeting

NEXT AMPT USERS GROUP MEETING JULY 25, 2017 AT 1 PM EASTERN

- Regional
 - User-Producer Groups
 - State Asphalt Paving Assoc. meetings

Shadow PRS status

- Maine DOT SHRP2 R07
- Western Federal Lands SHRP2 R07
- Missouri DOT 2 projects (3 total mixtures)
- North Carolina DOT SHRP2 R07
- Oklahoma DOT SHRP2 R07
- MATT support
- Marketing of success stories
- SEEKING ADDITIONAL SHADOW PROJECTS WITH DOTs

Office of Asset Management, Pavements, & Construction

Asphalt Technology Guidance Program (ATGP)

Program Objectives

- Advance Performance
- Advance Quality Assurance
- Advance Innovation

Federal Highway Administration

Courtesy of Anton Paar

Program Focus Areas

- Provide Support to National Initiatives
 - Increased Pavement Density
 - Increased RAP/RAS Usage
 - Understanding GTR Testing
 - Mixture Performance Testing and the AMPT
 - Stone Matrix Asphalt
 - Binder Performance Testing
 - Long-Term Aging

Program Focus Areas (2)

- Equipment Development & Refinement
 - Asphalt Mixture Performance Tester (AMPT)
 - Standardization of Equipment, Test Methods
 - Binder Performance Testing
- Development of New QA Concepts for HMA
 - Performance-Based/Related and Risk-Based Acceptance
- Advanced Rapid Test Tools
 - AIMS, CoreLok, CoreDry, Small-Scale Geometry

Solutions to Agency Needs

- Project-Specific Workplans
 - -Material Characterization
 - High RAP/RAS, GTR, SMA, PRS...
 - -Mix Design Replication and Testing
 - -Mix Production Testing
 - -Performance Prediction
 - -Training and Demonstration

Thank you!

- Questions?
- Contact information (AMPT and PRS)
 - David Mensching
 - 202.366.1286
 - <u>david.mensching@dot.gov</u>
- Contact (PRS and Shadow)
 - Richard Duval
 - 202.493.3365
 - <u>Richard.duval@dot.gov</u>

